
 

 

1. Introduction  
Over the past decades the cost of next generation sequencing has           
dramatically gone down. This has been a trigger for extensive genome           
analysis by different consortiums (Wetterstrand, 2020; Mardis, 2011).        
Some with a focus on sequencing the genomes of healthy humans (1000            
genomes), others in tumor samples (TCGA, ICGC) and yet others in the            
space of metagenomics and microbiomes. A majority of current         
sequencing technologies rely on a key step called mapping, before          
further analysis of any kind is performed. 

Oftentimes, especially in the metagenomic and microbiome whole        
genome sequencing spaces, reference genomes are not easily available         
and hence the majority of reads go uncharacterized (Sangiovanni et.al.,          
2019; Laine et.al., 2019; Zhu et.al., 2019). Additionally, tumor samples          
often contain a mixture of tumor cells, normal human cells, microbes and            
viruses present in the tumor microenvironment. While most of the reads           
belong to the human genome and map very well, ~2-5% of the reads go              
uncharacterized (Laine et.al., 2019; Tae et.al., 2014). Recent studies         
have shown the importance of these reads. Kostic et. al. recently           
published a study where upon close inspection of unmapped reads in           
tumor WGS samples, they found an association between fusobacterium         
and colorectal cancer (Kostic et.al. 2012). Another study by Park et. al.            
on exploring human microbiome data found that the unmapped reads          
actually belonged to a completely novel organism called crAssphage         
(Park et.al., 2020). Laine et. al. have stressed on the importance of            
characterizing reads that do not map to any genome and were able to             
identify new pathogenic bacteria that affect songbirds after analyzing         
their genome (Laine et.al., 2019). 

Outside unmapped reads of human or tumor samples, a lot of reads in             
metagenomic samples (60-70%) go uncharacterized (Zhu et.al., 2019).        
Recently, there have been some methods being developed and more          
effort is being put into characterizing reads. A popular technique being           
used right now for such analysis is Pathseq by the Broad institute. This             
method uses a multi mapping step to characterize reads in a sequencing            
experiment (Kostic et.al. 2011). Their main focus is on characterizing          
reads in human sequencing samples through subtractive mapping. While         
their approach is highly effective, it is limited as it requires reference            
genomes to characterize the reads. Further, the first step of their           

approach is essentially to map to the human genome and then to            
microbial genomes. This approach is well suited for human sequencing          
samples as the majority of the reads are of human origin, but would             
create an unnecessary bias for metagenomic and microbiome samples.         
Another challenge is that the reference databases required for mapping          
reads to micro-organisms are huge and often demand a huge memory           
requirement (Ye et.al. 2019) making such analysis difficult on personal          
computing systems. 

Mapping algorithms are extremely robust and can accurately identify         
where reads map in a reference genome. However, while often very           
effective, mapping does not scale well when trying to characterize reads           
for which reference genomes are unavailable (Ye et.al. 2019). Here we           
would like to present a deep learning approach to characterize reads in            
any sequencing experiment. We chose a deep learning based language          
model known as DNABert as it is reference free and could potentially            
characterize reads from novel organisms as well, which is an inherent           
limitation of mapping. There have been some studies that have shown           
for specific applications where deep learning and machine learning         
models were used to characterize reads (Deneke et.al. 2017, Tampuu          
et.al. 2019). We show that with minimal hyperparameter adjustment and          
fine-tuning of the DNABert model we can accurately classify human and           
bacterial reads.  

Compared to the traditional approach of Path-seq which involves         
multiple mapping steps, our model takes sequence reads as input and is            
able to classify between human and bacterial reads. Due to          
computational limitations, we were unable to directly compare our         
results with Pathseq, but built a similar approach that we could test our             
model against. See the methods section below for further details on our            
model and mapping algorithm implementations. 

2. Methods 
The data and the methods used for the same are explained below. 
 
2.1 Data Procurement 
 
References for human and bacterial genomes were downloaded from the          
RefSeq database (NCBI). The data was downloaded from the FTP portal.           
The GCF_000001405.25_GRCh37.p13 version of the human genome       
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Fig. 1. Performance of mapping and DL model on classifying human and bacterial reads. A) ROC curves for our fine-tuned model as well as the base DNABert model for classifying human and bacterial 
reads at mutation rates of 0.01 and 0.1 snps/bp (four combinations total). Performance of mapping shown as individual points. B) A comparison of the performance of our fine-tuned DL model to our 
mapping algorithm at classifying human and bacterial reads mutated at a rate of 0.1 snps/bp. C) ROC curves for our fine-tuned model as well as the base DNABert model for classifying chimeric human 

was chosen for all the experiments. Representative bacterial genomes         
were downloaded from Refseq. 
(https://www.ncbi.nlm.nih.gov/refseq/about/prokaryotes/). Data for only    
organisms that had complete genomes were downloaded (2847        
genomes). 
 
2.2 Generation of synthetic reads 
 
Synthetic reads for human and bacterial genomes were created using          
NEAT-gen reads (Stephens et.al. 2016). For creating mutation datasets         
we used the mutation rate parameter of the tool to create datasets with             
mutation of 0.01 and 0.1 snps/bp. Default parameters were used for           
generating data with coverage of 1 for human genomes and 10 for            
bacterial genomes. For the generation of chimeric human reads we first           
generated unmutated human reads using NEAT-gen reads and then         
randomly merged 50bp substrings from each read in order to generate           
chimeras.  
 
2.3 Mapping of synthetic reads 
 
GCF_000001405.25_GRCh37.p13 was chosen as the reference human       
genome. We used BWA (bwtsw) to first index the reference genome and            
all the test sets were mapped to the human genome with default            
parameters using BWA mem (Li and Durbin, 2009). Reads that were           
mapped were tested for accuracy metrics (Supp. Methods 2). Unmapped          
reads were then classified using Kraken2 (Wood et.al. 2019).         
Minikraken2 database was used for the analysis as there were memory           
limitations in using the entire kraken database. The results of this step            
were again tested for accuracy metrics (Supp. Methods 2). 
 
 
2.4 Deep Learning model training 
 
In order to build a deep learning based model that could accurately            
identify reads as either human or bacterial we decided to take advantage            
of previous work in sequence prediction using deep learning. While          
many of the earliest methods for sequence prediction or sequence          
classification using deep learning used convolutional or recurrent neural         
networks, we chose to base our model on the newer transformer           
architecture. In 2020 the first transformer based deep learning language          
model trained on DNA, known as DNABert, was published by Ji et al (Ji              

et al. 2020). DNABert was trained for masked language modeling on the            
human genome in which sequences were tokenized into overlapping         
6-mers and 15% of tokens in each sequence were randomly masked and            
the model was trained to predict the identities of the masked tokens. In             
their paper Ji et al. showed that they could achieve state of the art results               
on several sequence prediction and classification tasks by then further          
training (fine-tuning) this pretrained model for specific tasks.  

We fine-tuned the DNABert model for the classification of human          
and bacterial reads by training the model for binary prediction on a            
dataset of 1 million unmutated human and 1 million unmutated bacterial           
reads from 6 phyla commonly found in human microbiomes (Supp          
Method 1). All sequences used for model training and testing were           
length 100bp. After some limited experimentation with the learning rate          
and batch size we chose 2e-5 as the learning rate and 32 as our training               
batch size. Fine-tuning was performed on one NVIDIA 1060 GPU over           
roughly 30 hours. 
 
2.5 Generation of test sets for both the mapping algorithm and                     
deep learning model 
 
We chose to test the performance of our model’s classification compared           
to the classifications of our mapping algorithm using the following sets           
of tests: 1) 90% human reads mutated at rates of 0.01 and 0.1 snps/bp              
and 10% bacterial reads mutated at rates of 0.01 and 0.1 (four            
combinations total), 2) 90% chimeric human reads and 10% bacterial          
reads mutated at rates of 0.01 and 0.1 snps/bp. All test datasets contained             
200,000 reads total. For each test a corresponding fastq was made that            
was then used as input for our mapping algorithm. Since our deep            
learning model does not have a mechanism by which to interpret quality            
scores, we set the quality scores for all test set reads used for mapping to               
be the highest possible score. In order to make our tests more            
challenging we also only used mutated bacterial reads from phyla which           
did not contribute any reads to our training data.  

3. Results 
The ROC curve was plotted to compare the proposed model’s          
performance with that of the standard mapping + kraken2 approach.          
These characteristics are presented in Figure 1 (A) for mutated human           
and bacterial reads, and Figure 1 (C) for chimeric human and mutated            
bacterial reads. The figures present the characteristics of the untrained          
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model (base) and the final trained model. There are separate curves for            
the four different combinations of mutation rates for the human (0.01           
and 0.1 snps/bp) and bacterial reads (0.01 and 0.1 snps/bp). The           
performance of the mapping-based pipeline has been projected on the          
plots as multiple single points. 

Our proposed deep-learning based model was able to match or          
approach the performance of a standard mapping-based pipeline in         
almost all scenarios. The bar charts in Figure 1 (B) and 1 (D) display the               
percentage of correctly classified human and bacterial reads for the          
non-chimeric and chimeric reads respectively. For the non-chimeric        
reads the DL model was able to match the performance of mapping on             
human reads (both 99.98%) and came close to it on bacterial reads            
(48.90% vs 62.98%). On chimeric reads, the DL model did not come            
close to the performance of mapping on bacterial reads (29.53% vs           
62.49%) but was able to match it on human reads (both 100%). Still,             
mapping does seem to incorrectly classify a larger number of bacterial           
reads at higher mutation rates compared to the DL model. 

4. Discussion 
Based on the experiments conducted and the results obtained, it can be            
concluded that the proposed model is able to classify bacterial reads           
from human reads with high accuracy, despite the fact that the model            
was tested on reads from phyla on which it was not trained. The high              
accuracy is sustained when mutations are introduced into the sequences,          
at high frequencies resembling a rapidly mutating bacterial population. It          
can be seen in Figure 1 (A) that raising the mutation rate from 0.01 to 0.1                
significantly increases the fraction of incorrectly classified bacterial        
reads by mapping, but this does not appear to be case in the performance              
of our deep learning model, which is evident in the degree to which the              
ROCs overlap regardless of the mutation rate. 

In comparison to existing methods, the model affords the advantage of           
having a drastically smaller memory footprint, and hence eliminates the          
requirement of huge amounts of system memory required in a          
mapping-based sequence analysis pipeline. The model also does not         
require pre-curated genome references for training. A small amount of          
sequenced reads of the target population(s) are sufficient to reach high           
identification accuracy. Consequently, the memory requirements do not        
scale higher with respect to the dimension of taxonomy that is used            
(phyla/taxon/organism). 

Still, due to the proposed model being based on the computational           
approaches of deep learning, it suffers many of the same limitations. The            
training time is high when compared to a simple indexing procedure on            
an existing database. Due to the use of a binary classifier as the output              
node of the model (as of now), it is also currently limited to classifying              
each read as either human or bacterial. 

Sequencing reads contain additional information such as quality        
scores, which do not currently find a use in the deep learning model. We              
have also not been able to perform sub-kingdom level classification for           
bacterial reads, hence the performance of the model in those tasks is            
unclear. 

Mapping-based pipelines are effective after fulfilling the requirement        
of good reference databases. These techniques would fail when they          
encounter reads that do not map to the existing reference database (the            
reason for non-conformity of the read notwithstanding). Deep-learning        
based models based on their inherent superiority at pattern recognition          
can serve as potential solutions to such problems. 

 
4.1 Future Prospects 
 
There are many ways that the current model can be extended. To            
incorporate identification of additional genomes, the deep learning        
model can be extended to include multi-label classification.        
Identification of sub-kingdom taxa for bacterial reads is possible through          
additional relevant data and training pipeline. It would also be worth           
determining how well a model such as the one described here can            
distinguish viral from human and bacterial reads. 

We believe that Deep Learning based sequence classification models         
have significant potential in the study of metagenomics as they can be            
used to identify and characterize unmapped reads in that domain. While           
the ideal reference for the classification of metagenomic reads via a           
mapping algorithm may be both enormous and unattainable, it may be           
possible to build a useful model or family of models for the classification             
of metagenomic reads using only a small subset of the metagenomic           
reads space as training data for large language models.  
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